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INTRODUCTION

Many different types of imaging sensors exist, each sensitive to a different
region of the electromagnetic spectrum. Passive sensors, which collect energy
emitted or reflected from a source, include television (visible light), night vision
devices (intensified visible light), and infrared (heat) sensors. Active sensors, in
which objects are irradiated and the reflected energy from those objects collected,
include sonar and ultrasound (acoustic waves) and radar (radio waves).

These sensors were developed because of their ability to increase the
probability of identification or detection of objects under difficult environmental
conditions. Each sensor is sensitive to different portions of the spectrum; therefore
resultant images contain different information even when used under the same
conditions. Because of this variety, image processing algorithms that will "fuse" the
information from more than one sensor into a single coherent display image are
being developed. These displays are termed multisensor or sensor fusion displays.

The work described in this paper was conducted to guide the development of
such multisensor displays. An engineer developing such a system constantly
reviews the resulting display on a subjective basis. More formal testing is also
necessary. Suppose, for example, that two sensor sources are available to operators
and that each of these sensors alone leads to 0.70 probability of target recognition
under some particular environmental conditions. What is the expected probability of
target recognition when the two sensors are combined according to some image
processing technique? If observed target recognition improves to 0.80 with a sensor
fusion system, is that a large improvement, or should one actually expect much
more? The ability to answer these types of questions can lead to a better human-
machine system that can be evaluated both relatively and absolutely: relatively, by
determining which systems are better than others, and absolutely, by comparing
operator performance to theoretical expectations.

INFORMATION INTEGRATION MODELS

Previous work has been conducted on the topic of how operators integrate the
information from multicomponent auditory signals (Reference 1), from the visual
and auditory senses (Reference 2), and from multiple observations over time
(Reference 3). These models all predict operator integration performance as a
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function of the operator's performance with the individual stimuli comprising the
integration task. Two classes of models have been developed: decision combination
models and observation integration models (for a review, see Reference 4). The
decision combination models assume that in the integration task the operator makes
an individual decision about each aspect of the combined display and then combines
those decisions to yield one final decision. At the time of the final decision, only the
previous decisions are available and not the information that led to the individual
decisions. The observation integration models, on the other hand, assume that the
operator does have access to that information. The internal representations of the
individual observations (e.g., likelihood ratios) are then combined, yielding only
one decision.

The simplest version of a decision combination model is the probability
summation, or statistical summation, model. As Reference 4 notes, it is derived
from the independence theorem of probability theory and was first proposed by
Pirenne as a perceptual model (Reference 5). It states that performance with a
complex stimulus is predictable from the performance with the individual stimuli
according to the following equation:

P 12 = P + P 2 - PIP 2

where P, and p2 represent detection probabilities for the two stimuli presented in
isolation, and P12 is the detection probability when both stimuli are available.

The most cited version of the observation integration model is derived from the
theory of signal detectability and was originally proposed by Green (Reference 1).
As in Pirenne's model (Reference 5), in its most simple form, the information from
the two sources is also assumed to be independent and uncorrelated. The model is
stated in terms of the sensitivity measure, d':

d'12 M [ ( d 1)2 + (d'2 )2 ] 1/2

where d'l and d'2 and d'12 respectively, represent performance with the two stimuli
presented in isolation, and when both stimuli are available.

Swets has noted that the statistical summation model fits simple detection data
fairly well when the observed detection probabilities are corrected for chance
success (Reference 4). Similarly, in the experiments in which it has been applied,
the observation integration model well represents the data. In general, the statistical
summation model predicts better integration performance than the observation
integration model presented here. My calculations indicate that when both models
are expressed in corrected-for-chance probability of a correct response, the
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statistical summation model predicts the detection probability for integration to be
about 0.05 (depending on the absolute level) higher than that predicted by the
observation integration model.

Various versions and extensions of these models have been proposed. These
include various rules of decision combination (Reference 3), correlation
(informational redundancy) among inputs for decision combination (Reference 2),
and observation integration (Reference 6), as well as versions of the observation
integration model in which the separate inputs are differentially weighted
(References 7 and 8).

The two integration models presented here have been incorporated into the
development of a framework to evaluate combined human-machine performance for
sensor fusion displays. Additionally, the framework could be used to evaluate an
operator's ability to integrate information from a multiple monitor display system or
a screen paging system.

A PROPOSED EVALUATION FRAMEWORK

A sensor fusion display typically refers to the combined image display
resulting from the application of one image processing technique on two or more
individual sensor images. The proposed framework for evaluating the operator's
ability to use such systems is considered a normative approach; the operator's
performance with the sensor fusion display can be compared to performance on the
individual sensor displays comprising that display and to various optimal models of
integration.

Typically, as the environmental conditions change in which the individual
sensor operates, so does the information content of that image. The information
content of the image can be "scaled" by the operator's ability to perform a target
identification or discrimination task. One would expect task performance with a
sensor fusion display formed from two low information content (hence, poor-
performance) images to still be relatively poor. Similarly, two high information
content (high-performance) sensor images should yield good performance when
combined into a sensor fusion display. Assuming that there was some independent
information in the two individual sensor images, one would also expect
performance with the sensor fusion display to be better than with either of the two
individual sensors alone. This results in a hree-dimensional performance space:
performance with the sensor fusion image is a function of the performance levels
associated with the two individual sensor images.
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Figure I shows part of this performance space associated with a sensor fusion
display. The abscissa and the ordinate result from the stimulus-performance scaling
for sensor (or display) 1 and sensor (or display) 2, respectively, when viewed by
an operator in isolation. The figure shows the iso-performance horizontal "slice"
through the space in which all performance data points represent 0.72 (corrected for
chance) target recognition probability when the two sensor sources are combined
into a sensor fusion display and presented to an operator. As noted, the actual
performance space is three-dimensional and is represented in Figure 2 by similar-
appearing "slices" at three performance levels. Data points A, B, C, and D are
discussed below.

ISO*PE-FORMANCE SPACE: P(C) . 0.72

t USPerformance
* .A Decrement

0.72

- Perform nce
Enhancement

- .50uO ° 'e
o --.... .0 n cor Ptieror a y-nceael n

.30 0evuner-Enhncemena
GaP

e.g eOA 0.2 0.3 e.4 0.5 e.6 *.7 0.8 e.g 1.e

PId OPPLtAY I *tLONC
Le. Infennaifen High lftarmea,

FIGURE 1. A Proposed Evaluation Ftrmework FIGURE 2. Three Horzontal Slices Through
for Multisensor Displays. the Three-Dimrensional Performance Space.

The nwnber on each overlay represents the
perfomance level, in P(C). for the dual
display or multisensor display task.

Because the sensor fusion display data are plotted as iso-performance slices,
data points near the origin represent better performance than away from the origin.
For the same level of performance, a data point near the origin represents a
condition in which very little information was available in the two displays,
whereas a data point away from the origin represents a condition in which relatively
more information was available in the separate displays. Thus, data points near the
origin represent increased operator integration efficiency. In these figures and all
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remaining references, P(C) refers to the proportion of correct responses with a
correction for chance applied. A correction for chance is necessary when measuring
performance in P(C) units because the integration models require that a performance
level of zero be associated with the operator receiving no information from the
display. No such correction is necessary when measuring performance in d' units
since d' = 0 refers to chance performance.

As can be seen from the two figures, the sensor fusion performance space can
be divided into three separate areas, Performance Decrement, Performance
Enhancement, and Performance Super-Enhancement, each with unique
interpretations if data points lie in those areas. The two right-angle lines dividing the
Performance Decrement and Performance Enhancement areas are determined by the
horizontal and vertical lines crossing the axes at the level of performance (P(C) =
0.72 in Figure 1) for the sensor fusion display. The smooth curves separating the
Performance Enhancement and Performance Super-Enhancement areas are the
predictions of the statistical summation model (see above) where P12 = 0.72 in
Figure 1 and 0.30, 0.50, and 0.72 in Figure 2. (For clarity, only the statistical
summation model curve has been shown in the two figures. Because the research to
date does not favor either the statistical summation or observation integration
models, both predictions will be used when evaluating the experimental data.)

The interpretation of the data points falling into the three areas is best illustrated
by example.

PERFORMANCE DECREMENT

Suppose under a given environmental condition, an operator achieved target
recognition performance of P(C) = 0.33 when viewing Sensor 1 in isolation and
P(C) = 0.84 when viewing Sensor 2 in isolation. When these two sources are both
available (separately on two monitors, or fused on a single monitor according to a
sensor fusion algorithm) to the operator and performance is P(C) = 0.72, the
resultant data point would be the one labeled "A" in Figure 1. Obviously, in this
situation, the operator has not improved his overall targeting performance. In fact,
performance in the combined display case has now decreased to P(C) = 0.72,
whereas previously the operator used Sensor 1 in isolation and reached a
performance of P(C) = 0.84. Such a performance decrement could be the result of
the deletion of necessary information by the sensor fusion algorithm or could
represent a cognitive limitation on the part of the operator.
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PERFORMANCE ENHANCEMENT

Data point "B" in Figure 1 would result if P(C) = 0.72 performance obtained in
the combined case, when Sensors 1 and 2 yielded P(C) = 0.63 and P(C) = 0.55,
respectively, in isolation. In this case, performance improved since the operator did
better in the combined case (0.72) than with either of the two sources alone (0.55,
0.63). However, one model of information integration, the statistical or probability
summation model, predicts a larger improvement in this case. Thus, for data points
falling in this region, there is some performance improvement, but one would
expect more. In fact, data point "C," lying on the statistical summation model
curve, shows that the model predicts that if Sensor 2 performance was 0.52,
Sensor 1 performance need only be 0.42 to result in combined performance of
0.72.

Operator performance occurring in this region would occur when some of the
information in the two sources is redundant (correlated and not independent), or
when the operator or the sensor fusion algorithm integrate the information, but do
so suboptimally. The statistical summation model (as well as the observation
integration model) can be viewed as an upper limit of integration: it assumes that the
information in the two sources is independent and non-redundant, and does not
assume any decrease in performance due to the limits of cognitive processes (i.e.,
memory limitations, work load, or suboptimal decision strategies).

PERFORMANCE SUPER-ENHANCEMENT

Data point "D" in Figure 1 would result if a combined performance of
P(C) = 0.72, and individual performance for the two sensors was P(C) = 0.17
and P(C) = 0.52. Data points falling in this region between the model prediction
and the origin represent improved performance that is better than is predictable from
the model. That is, when the two sources of information are viewed by the
operator, some new, previously unusable, information emerges that results in much
better performance.

The random-dot stereogram display (Reference 9) can be thought of as an
example of a sensor fusion display that has these properties. In these displays,
random dots are offset differentially, yielding a perception of an object in the third
dimension. In such a stereogram there is no information whatsoever in the
individual halves of the stereogram. The information is represented as differences
between the two displays. The object is observable only by stereoscopically fusing
the two halves of the stereogram or analytically determining the differences. In fact,
if one conducted an experiment in which subjects had to state the "floating" shape,
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one would presumably obtain chance performance when viewing only one
stereogram half and perfect performance when both stereogran pairs are viewed.
This represents Performance Super-Enhancement because based on chance
performance with the stereogram halves, one would conclude that they contain no
information. This would lead one to predict chance performance when both halves
are available, which obviously is not the case. Clearly, conditions in which
Performance Super-Enhancement occur could be capitalized upon to produce useful
sensor fusion techniques. The proposed evaluation framework provides for the
ability to recognize and quantify such conditions.

USE OF THE EVALUATION FRAMEWORK

To evaluate human performance with a proposed sensor fusion system using
the proposed evaluation framework, the following steps must be taken.

1. Performance Scaling of Sensor 1. Determine the psychometric
function relating task performance (target/non-target or m-alternative forced choice)
to the environmental conditions of interest. For example, infrared imagery is
degraded by increasing atmospheric moisture. The information content of each
sensor image varies with the environmental conditions, and in a sense, this scaling
estimates the amount of information available to the operator with Sensor 1 alone
under those conditions.

2. Performance Scaling of Sensor 2. Similar to Sensor 1.

3. Performance with Sensor Fusion Display. For various com-
binations of environmental or sensor conditions previously evaluated in isolation,
determine task performance using the proposed fusion algorithm and associated
display.

4. Performance with Operator Integration. As in the sensor fusion
evaluation phase, determine task performance with both sensors but with either two
displays or a split screen. This conditicn acts as a control condition, essentially
allowing the operator to integrate the information from the two sensors. A sensor
fusion algorithm should yield better task performance than when the operator uses
two displays or a split-screen display.

An experiment was conducted to demonstrate the usefulness of the proposed
"evaluation framework." Since this work was aimed at the general methodology of
evaluating sensor fusion displays and due to the unavailability of a sensor fusion
system that operates on imaging sensors and yields a "fused" image, step no. 3
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above (performance with a sensor fusion algorithm) was not performed. In this
particular experiment, two displays with independent samples of the stimuli
simulating one type of sensor were used. (One might view this as a simulation in
which sensor fusion operates on image samples collected at different times or from
two data-linked sensor platforms using the same sensor type.) This is a special case
of the sensor fusion condition, but the application of the evaluation framework to
two different sensors is identical. Because there was only one type of sensor to
scale, step no. 2 above (performance caling of Sensor 2) was not necessary. That
step, of course, would have been necessary if two different sensors were used.

METHOD

SUBJECTS

Four volunteer subjects were tested. The author (subject no. 1 reported herein)
and three colleagues were tested for 8 to 12 hours each. All subjects reported
normal or near-normal close-distance corrected vision.

SHIP IMAGES

Side profiles of ships from Jane's Fighting Ships (Reference 10) were used as
stimuli in the study. The ship images were approximately 2.2 centimeters high by
6.6 centimeters wide and presented on Setchell Carlson 10M915 CRT displays
driven by a Genisco GCT-3000 image system. Viewing distance was determined
by the subject. The ship images were digitized profiles composed of 60 points
connected by lines, evenly-spaced in the horizontal dimension, as shown in
Figure 3. Each undistorted image spanned 60 vertical picels by 180 horizontal
pixels on the CRT display.

The independent variable was the amount of noise added to the vertical
dimension of the ship profiles. This variable was quantified as "sigma," the
standard deviation of a Gaussian distribution with mean zero. A computer algorithm
based on random number samples was implemented for this purpose. For a given
sigma level, 60 numbers (both positive and negative) were drawn from that
distribution and added individually to the vertical pixel value of each of the 60
points of the ship profile. For example, for sigma = 5, on average 68% (the area of
the Gaussian curve from -I to +I standard deviation) of the points would be within
5 pixels of the original undistorted vertical value. New numbers were drawn from
the distribution for each ship and each trial; thus no two distortions were identical.
Two of the ships with distortions for four levels of sigma are shown in Figure 4.
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CaifUor'aa Caontz Iowa
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Svrdlov Ticonderoga Udaloy

FIGURE 3. Digitized Ship Profiles of the 15 Ships Used in the Experiment.

SINGLE-DISPLAY TASK

The task was a 4-alternative, forced-choice (4AFC) task and was controlled by
a VAX 11/7,50. Subjects viewed a single-CRT display partitioned by vertical and
horizontal lines into four numbered quadrants, each containing a ship image.
Subjects were required to identify which of the four ships was the California,
which was always present in each display. In addition to the target ship, California,
three different distractor ships were presented that were randomly drawn from the
14 remaining ships shown in Figure 3. During testing, subjects were allowed to
study the ship images for an unlimited time. Subjects responded with a button press
of the numbers 1 to 4, referring to the quadrant which they believed held the target
ship, California. Full feedback (quadrant responded, correct/incorrect, and the
correct quadrant if incorrect) was given after each trial via a digitized speech
capability on a Texas Instrument (TI) Portable Professional computer. The end of
the verbal feedback initiated the next trial. All four ships on a display were created
with the same sigma (distortion) level.
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Califormia (Sigma = 0) Knox (Sigma - 0)

Califoria (Sigma = 101 Knox (Sigma a 10)

California (Sigma = 20) Knox (Sigma = 20)

California (Sigma a 30) Knox (Sigma = 30)

FIGURE 4. Examples of the Distortion Algorithm
Used for the Ship Profiles.

12



NWC TP 7027

DUAL-DISPLAY TASK

Conditions were identical to the single-display task with the following
exceptions. Ship images were presented on two horizontally adjacent CRT
displays. The four ships were arranged in the same spatial pattern on both displays
(i.e., if the California was in quadrant 2, it was at that location in both displays, and
likewise for the 3 remaining distractor ships). All eight ships presented were
independently distorted by new draws from the Gaussian distribution. Drawing the
distortion values from independent Gaussian distributions ensures that the
information on the two displays was independent and uncorrelated (see
Reference 11 for a discussion of this technique). Within each display on a given
trial, the four ships had a constant value of sigma. The value of sigma for each
display was determined as described below.

TEST PROCEDURE

Trials were tested in 25-trial groups, or blocks. Full performance feedback
(number correct as a function of sigma) was given after each block. Single- and
dual-display tasks were alternated approximately every two blocks so that the first
few blocks of each task could be discarded as practice.

For the single-display task, five levels of sigma were tested for each subject
and psychometric functions were generated. The five sigma levels used in the first
few blocks contained both low and moderate levels of sigma (from 0 to 20 or
5 to 25). Coupled with feedback after each trial, subjects were able to learn the
salient features of the target ship relatively quickly.

For the dual-display task an adaptive threshold estimation procedure was used
that mathematically converged on the stimulus value associated with corrected-for-
chance performance of P(C) = 0.72 (Reference 12). In this technique, display 1
contained ships of one of five previously selected sigma levels. In display 2, the
level of sigma (in increments of 5 units) of the ships varied as determined by the
threshold estimation procedure. This procedure determined the display 2 sigma
level as a function of the history of the subjects' responses. This resulted in five
interleaved adaptive tracks (one associated with each level of sigma in display 1).
This procedure results in five pairs of sigma levels for displays 1 and 2 that all
yield P(C) = 0.72 target identification performance in the limit. When plotted as in
Figures 1 and 2, the data points all lie on the same horizontal "slice" through the
three-dimensional performance space (specifically the one labeled ".72" in
Figure 2).

13
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Another procedure to estimate a stimulus value associated with a constant level
of performance is to collapse each of the interleaved tracks across trials into a
psychometric function that can then be fit with a curve. This procedure has proven
to be useful and is an efficient method to concentrate observations in the
performance range of interest (Reference 13). This procedure was attempted in this
experiment but did not yield reliable estimates because of the number of data points
in the psychometric function. This procedure would be preferred to the analysis that
was used if the number of data points allowed the estimation of stable psychometric
functions.

The use of the tracking algorithm in the present study should be viewed as an
experimental convenience, with its merits or limitations tangential to the use and
development of the evaluation framework. Use of the tracking algorithms may not
be appropriate in the actual evaluation of a specific proposed sensor fusion system
because only certain discrete pairs of stimulus combinations may be possible. For
example, if atmospheric humidity affects the image quality of both sensors, only
combinations of stimuli in which the atmospheric humidity was identical make
sense. In those cases, one would not use the threshold estimation procedure but
would test the imagery associated with the environmental conditions of interest.
These resultant data pairs would then be plotted on the various appropriate
horizontal slices similar to Figure 2 (determined by the dual-display or fusion-
display performance). Interpretation of the placement of the data points on the
various horizontal slices would be carried out in a fashion similar to that previously
described.

RESULTS

In the single-display condition, the first four blocks of data collected were
eliminated from the analysis as practice data. This decision was made after viewing
the accuracy data for each block. The data were analyzed and summarized as both
d' and P(C) (corrected for chance) measures. The d' data were converted to
n(sigma) by ln(d') and fit with a regression equation weighted by the number of

observations per point (References 13 and 14) as shown in Figure 5. The P(C)
values reported have been corrected for chance according to the following equation
(see Equation 5.4 in Reference 3):

= [ 1 -0.25]/0.75
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These P(C) data were converted to n(sigma) by z-score (unit-normal deviate) and
likewise fit with a weighted regression equation. The data and associated
psychometric functions are shown in Figure 6. Each data point in the two figures is
based on 60 to 100 observations. The Pearson correlations associated with the
linear regressions ranged from -0.91 to -0.99.

o 10
SUBJECT I SUBJECT 2

0

.1 .1. . .
10 100 10 100

SIGMA SIGMA

10 10
SUBJECT 3 SUBJECT 4

.1 . . .. 1 . .
10 100 10 100

SIGMA SIGMA

FIGURE 5. Psychometric Functions for the Four Subjects Relating Distortion
Level (sigma) to the Sensitivity Measure, dr, in the Single-Display Task.

In the dual-display condition, the five interleaved adaptive tracks were
analyzed. For each of the five fixed display 1 sigma levels, an average level of
sigma was calculated using Levitt's reversal mean technique (Reference 12). In that
technique, the stimulus level associated with P(C) = 0.72 is estimated by averaging
the midpoints of either the ascending or descending series of each track.
Customarily, some number of the early midpoints are discarded to allow
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performance to stabilize. In the present experiment, the first two ascending and two
descending series of every track were eliminated prior to computing the reversal
mean estimates. This corresponds to approximately the same amount of data that
was deleted in the single-display condition, so that the data analyzed in both the
single- and dual-display conditions represent comparable levels of training.

1.0 SBETT1.0 SBET2
S.8UBJECT 1 .8SUBJECT 2

0.6 0.6

I 0.4 00. 0.4
0

0.2 0.2

0.0 0.0-
0 10 20 30 40 0 10 20 30 40

SIGMA SIGMA

SU.0 SJECT 3 SUBJECT 4

0.8 0.8

0.6 0.6

0.4 0 0.4

0.2 0.2

0.0 • 0.0
0 10 20 30 40 0 10 20 30 40

SIGMA SIGMA

FIGURE 6. Psychometric Functions for the Four Subjects Relating Distortion
Level (sigma) to Corrected-for-Chance P(C) in the Single-Display Task.

Additionally, the first few blocks of testing included relatively easy levels of
the five fixed sigma levels on display 1. These first blocks were discontinued as
the subject became better at the task, and were replaced by higher sigma levels. For
example, the five levels for subject no. 2 ranged from 0 to 20 at the beginning of
the experiment but were increased to a range of 15 to 35 to keep the stimuli tested in
the appropriate meaningful psychophysical range and to not exceed the

16
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limitations of the tracking algorithm. Clearly, in an integration task, the algorithm
will fail to converge when single-display performance exceeds the value that the
algorithm is attempting to maintain (in this case) P(C) = 0.72 with two displays.
The discontinued tracks were not included in the analysis.

When the five fixed sigma levels on display 1 were changed as described
above, the tracks were continued if possible. In a small number of the tracks, the
track was erroneously "reset" to an arbitrary starting value. In those cases, the
ascending or descending series, which included the arbitrary starting value, was not
included in the estimate of the reversal mean.

Table 1 shows the dual-display performance data for those tracks that yielded
reversal mean estimates after eliminating the first two ascending and descending
series.

TABLE 1. Tracking Algorithm Estimates of Display 2 Sigma Level as a
Function of Display 1 Sigma Level for Each Subject in the Dual-Display

Condition. SE = standard error of the mean; n = number of reversals.

Reversal mean estimates
Subject

no. Display I Display 2 SE n
sigma sigma

1 15 20.68 1.29 11
20 17,00 2.06 10
25 15.00 1.60 7
30 11.00 1.07 10
35 17.50 2.89 3

2 15 25.83 4.41 3
20 27.50 0.00 1
25 22.00 3.10 5
30 19.38 1.20 4
35 13.50 0.61 5

3 15 16.00 1.14 5
20 14.38 1.03 8
25 13.21 0.83 7
30 8.93 0.99 7
35 12.50 0.00 1

4 17 26.43 5.26 7
19 16.04 1.36 12
21 17.00 1.66 10
23 15.91 1.23 11
25 13.75 0.90 12
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IMPLEMENTATION OF THE EVALUATION FRAMEWORK

Using the data from subject no. 4, Figure 7 is an example of the analysis
method. The lower panel shows the stimulus track determined by the threshold
estimation algorithm for the condition in which the distortion of the ship images in
the fixed display, display 1, was sigma = 25. Based on the pattern of this subject's
responses, the sigma level of display 2 was either increased or decreased across
trials in an attempt to maintain P(C) = 0.72 (corrected for chance). The mean of the
midpoints of the 12 descending series was calculated to be 13.75, as shown by the
bold line. Therefore for this subject, when sigma = 25 on display 1, the sigma level
on display 2 had to be 13.75 to obtain P(C) = 0.72 (corrected for chance).

These two sigma levels can then be "scaled" by the single-task psychometric
function as shown in the upper half of Figure 7. In this case, when display 1 was
sigma = 25 it yielded P(C) = 0.39 in isolation. When display 2 was
sigma = 13.75 it yielded P(C) = 0.71 in isolation. When both displays were
available, however, performance was presented simultaneously with a P(C) of
0.72. That is, for this condition and subject, in P(C) accuracy terms, a display
"worth" 0.39 plus one "worth" 0.71 combined to be "worth" 0.72.

All of the data pairs yielding iso-performance levels can be scaled in the
manner described above and plotted on the evaluation framework graph. Figure 8
shows the data in P(C) units as scaled by the P(C) psychometric functions, and all
points representing P(C) = 0.72 (corrected for chance) dual-display performance.
Figure 9 shows the data in d' units as scaled by the d' psychometric functions,
with all points representing d' = 1.86 (which corresponds to P(C) = 0.72). In both
figures, only the data based on three or more reversals (n > 3 from Table 1) are
plotted. The two curves represent predictions of the two optimal integration models
(statistical summation and observation integration) as described by the equations
sl'own in the figures. The d' predictions and P(C) predictions, respectively, were
converted to P(C) and d' units according to algorithm no. 2 in Reference 15.
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FIGURE 7. Example of the Performance Scaling Method, in Which Dual-
Display Performance is Calculated in Terms of Single-Display Performance.
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FIGURE 8. ExpenmenIal Dam, in Correcte-for-Chance P(C),
Overlayed on the Proposed Evaluation Framework.

DISCUSSION AND CONCLUSIONS

Ten of the eighteen data points in Figures 8 and 9 lie in the triangular
"performance enhancement" region when plotted onto the evaluation framework
graph. For those conditions, the subjects were able to integrate the images from the
two displays and performed better than when only one of those displays was
available. The conditions that led to integration appear to occur when display no. 1
was of moderate distortion (approximately P(C) = 0.50 in Figure 8, and d' = 1.25
in Figure 9).
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FIGURE 9. Experimental Data, in d', Overlayed on the Proposed
Evaluation Framework.

When a highly distorted display (yielding about P(C) = 0.30) is presented as
display no. 1, the images in display no. 2 must be of very low distortion to yield
P(C) = 0.72 with both displays. In fact they must be of such low distortion that if
presented in isolation, they would have yielded a performance of P(C) = 0.80 or
0.90. The subjects would have done better in those conditions if the subjects had
simply ignored the highly distorted images on display no. 1 and based their
responses only on the images of display no. 2. (Graphically, that would have
forced the data points onto the horizontal straight lines shown in Figures 8 and 9.)

A model in which subjects always give equal weight to the information in the
two displays (despite the distortion level) would explain this finding. The effect
may be similar to that noted in Reference 16 where subjects weighted obviously
irrelevant information equally with relevant information. The conditions which
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facilitate the integration of display information, and those that not only do not
facilitate, but actually decrease performance, clearly warrant more investigation.

As stated earlier, the statistical summation and observation integration models
can be viewed as an upper bound to normal (not Performance Super-Enhancement)
information integration. In this particular experiment, the model predictions were
not only an upper bound on performance in general, but in fact were appropriate
predictions since the information in the dual-display condition was independent and
uncorrelated. The models' failure to predict the data establishes the existence of the
subjects' cognitive limitations in this particular task.

As noted previously, since these models have both been extended in the
literature to include correlation between information sources, one could use model
fits to determine the level of informational redundancy between two displays. If one
were able to measure objectively such redundancy on a specific task, then it would
be necessary to use those equations in the evaluation framework instead of those
used in Figures 8 and 9, which assume no correlation. Increasing the correlation
from zero to one in these models forces the model predictions towards the vertical
and horizontal lines representing the boundary of the Performance Decrement and
Performance Enhancement areas in the evaluation framework. This holds because
data points away from the origin represent less integration, and with increasing
correlations one expects to observe less integration (adding a second display does
not add as much new information with larger correlations).

In summary, the evaluation framework developed herein has been
demonstrated to be a useful tool to evaluate an operator's ability to integrate
information from two displays. Similarly, it has been shown how one can
determine the amount of information that an operator can extract from a sensor
fusion, or multisensor, display. The techniques discussed here allow the evaluation
of multisensor displays by comparing multisensor display performance to the
predictions of existing optimal integration models and to multiple display
presentations. This evaluation allows the human factors engineer to recognize in
both an absolute and a relative sense whether the proposed multisensor display does
what it was designed to do, i.e., integrate the sensor information and present it
well.
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